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Abstract

Some issues involved in establishing a numerical model for sound radiation from a straight duct are
addressed in this paper. The main ingredient of the numerical method is solutions of linearized Euler
equations using a high order compact scheme. Farfield directivity is estimated through an integral solution
of Ffowcs–Williams Hawkings equations. A generic test case of planar wave radiation from an unflanged
duct is studied. The sound pressure level and wave propagation in the nearfield are analyzed, together with
the farfield directivity. Comparison with analytical solutions shows good agreement. The effect of grid
resolution on the sound radiation pattern and the construction of integration surface on the farfield
directivity are discussed.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Sound radiation from an engine inlet duct is a challenging problem in aeroacoustics. Numerical
models based on finite element/infinite element methods have been developed for problems.
Recently, methods based on computational aeroacoustics (CAA) have also been developed. CAA
is concerned predominately with obtaining time-accurate numerical solutions to unsteady flow
and acoustic problems, through application of long-time accurate time-integration strategies and
high order spatial discretization schemes to the flow governing equations. A variety of issues need
to be addressed in attempting a numerical simulation of the aeroacoustic problem, such as non-
dissipative and non-dispersive requirements for acoustic waves, which have small amplitude and
high frequency compared to mean flows, non-reflecting boundary conditions and long-time
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history at large distances [1]. Over years a number of studies have appeared dealing with different
aspects of the duct radiation problem [2–8]. .Ozy .or .uk and Long [2] used a temporally and spatially
fourth order accurate, three-dimensional (3D) Euler solver coupled with the Kirchhoff method to
predict the farfield sound pressure. They showed that a grid resolution of 12 points-per-
wavelength (PPW) gave results without significant dispersion and dissipation. However the
accuracy of the Kirchhoff method depends on the surfaces. Wells and Renaut [3] provided an
overview of the problem associated with aerodynamically generated noise. Using a sixth order
spatial scheme, they found that a 6 PPW (minimum 4 PPW) calculation resulted in a slightly
slower wave speed compared with accurate solution. However a 8 PPW calculation gave quite
accurate results. With a second order scheme, 50 PPW would be needed for good results. Rumsey
et al. [4] used a Navier–Stokes code (CFL3D) together with the Kirchhoff method to predict
farfield sound pressure from ducted-fan engine acoustic modes. In their calculation, 25 PPW
spatial resolution was required for the second order accurate code.

In this paper, some issues involved in developing a radiation model based on CAA are
discussed. The specified test case is the modal radiation (with and without mean flow) problem
described by Homicz and Lordi [9]. In particular, a planar wave radiation computation to simplify
the computation setup is selected. For this case, farfield analytical solutions exist and nearfield
solutions can be obtained from existing finite element methods. Therefore, both the nearfield and
farfield CAA predictions can be validated. The specific strategy is based on CAA algorithms
running on parallel computing platforms, combining aeroacoustic treatment of boundaries for
wave admission and emission, a high order compact scheme with low dispersion and dissipation
errors for propagation, and acoustic analogy models for farfield radiation. Attention has been
paid to issues such as the size of the buffer zone for various acoustic wave inputs and outputs, the
placement of the integration surface, and the grid resolution around the duct edge. At every step
the nearfield and farfield predictions are compared with existing solutions, either analytical or
numerical. In the paper, however, only the farfield comparisons are shown.

2. Method

2.1. Numerical model

As illustrated in Fig. 1 the whole computational domain is divided into three regions: the wave
admission and emission regions, a propagation region around the edge of the duct and a radiation
region outside the propagation region. The CAA model is applied to these regions with specific
emphasis. Through the wave admission region, prescribed incoming waves from either duct
acoustic calculation or computational fluid dynamics (CFD) calculation are admitted into the
propagation region, in a form defined later. Spurious waves in the wave admission and emission
regions are damped by using a buffer zone boundary condition. In the propagation region, the
acoustic wave propagation is predicted by solutions of the linearized Euler equations (LEE). The
background mean flow can be a CFD solution, a measurement or an analytical solution. The LEE
solution also provides input to the radiation model which is applied to the wave radiation region.
In this study, an integral solution of the FW–H equation [10] is used to predict the farfield
radiation.
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2.2. Linearized Euler equations

Assuming small perturbations about a steady mean flow, the acoustic wave propagation can be
described by the LEE:
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where r0; v0; p0 are density, velocity and pressure perturbations, r0; v0; p0 are mean flow
properties and a1 ¼ 0 for a Cartesian co-ordinate system. In cylindrical co-ordinates, a1 ¼ 1 and
the derivative @=@z in Eqs. (1)–(5) is replaced by @=ðy@yÞ; where y is the azimuthal angle. The fluid
is modelled as a perfect gas, and all variables are non-dimensionalized using a length scale of 1 m;
a velocity scale of 340 m=s and a density of 1:225 kg=m3: In presenting the results, unless
otherwise stated non-dimensional values will be used.

2.3. Non-reflecting boundary conditions

The numerical scheme employed in the study possesses low dissipation and dispersion
characteristics. Hence any inconsistencies due to numerical treatments in the inflow and outflow

ARTICLE IN PRESS

Fig. 1. Schematic of the radiation model.

X.X. Chen et al. / Journal of Sound and Vibration 270 (2004) 573–586 575



boundaries will introduce errors or spurious wave reflections in the computation, which will
eventually degrade the solutions. In the buffer zone, damping is directly applied to the numerical
solution vector Q ¼ ðr0; u0; v0;w0; p0ÞT at each time step,

*Q ¼ Q� sðQ�QtargetÞ; ð6Þ

where Qtarget is a given reference. The damping coefficient s is defined as

sðlÞ ¼ a2
L � l

L

� �b1

; ð7Þ

where l is the distance from outer boundary of the buffer zone, L is the buffer zone width.
Parameters a2 ð¼ 1Þ and b1 ð¼ 1:5Þ are used to determine the nature of the damping coefficient s
which varies smoothly from zero at the interface between the buffer zone and propagation region
to a value, normally one, at the outer boundary. The specified damping coefficient provides a
sufficient amount of damping to filter spurious reflections. An investigation by Richards et al. [11]
shows that, among various types of non-reflecting boundary conditions, the explicit formulation
used in this work is better suited for duct radiation computation.

Within the wave admission region, waves, other than the incoming waves, will be damped.
This allows the integrity of the acoustic inflow condition to be maintained. Within the wave
emission region the buffer zone boundary condition is also used to prevent the reflected waves
from the outer boundaries by setting the reference values to zero since the exact wave solution is
unknown. This is critical for accurate farfield noise radiation computations using an integral
method.

2.4. Radiation model

An integral solution of the FW–H equation has been implemented numerically to allow the
farfield noise level to be determined efficiently. The particular integral solution implemented is
known as formulation 1A following Farassat [12]. This time-domain formulation is valid in both
the near- and far fields, and is appropriate for surfaces in arbitrary motion.

3. Numerical implementation and code validation

The LEE solver uses a sixth order compact scheme [13] for spatial derivatives and a fourth
order 4/6 stage explicit Runge–Kutta scheme [14] in time integration. In order to filter the small
numerical disturbances a 10th order filter is also applied at each stage of the Runge–Kutta scheme
[15]. The propagating unsteady flow perturbations ðr0; u0; v0;w0; p0Þ are then recorded in the
integration surface, which is placed within the LEE computational domain, as inputs to the FW–
H solver. A slip-wall boundary condition is applied to the duct wall surface and the buffer
zones are placed around the outer boundary of the physical computational domain as
non-reflecting boundary conditions to filter out the reflected waves. A symmetric boundary
condition may be applied depending on problem specified. Only 2D problems are considered here.
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However the application to 3D problems is straightforward and the code is written to enable this
extension.

In evaluating the farfield noise level, a 3D integration surface is constructed. The azimuthal
grid number is fixed at 40 for zero azimuthal mode to retain accurate 3D data for the
FW–H prediction. To assess the farfield directivity, the analytical solution of Homicz and
Lordi [9] is given at a distance of 100 m from a center at ðxe; 0Þ where xe is the axial value at
the duct edge. The solutions cover an arc of 120	 consisting of 100 points.

The basic methodology has been validated against a range of test cases, including a Gaussian
pulse passing though a 2D cylinder [13] and linear wave propagation problems. Good agreements
have been found.

4. Planar wave radiation from an unflanged duct

4.1. Problem set up

A single ðm; nÞ mode, where azimuthal mode number m ¼ 0 and n ¼ 1 is first zero of the
Bessel function of zeroth order of first kind, is used as an input for the modal propagation and
radiation from a semi-infinite unflanged duct with infinitive thin rigid wall against an uniform
mean flow: constant u0 and p0; w0 ¼ 0 and v0 ¼ 0: The incident acoustic wave is also
axisymmetrical ðw0 ¼ 0Þ: The effect of wall thickness [8], although investigated in the study, is not
reported here.

The computational domain is shown in Fig. 2, which represents a cross section of the 3D semi-
infinite circular duct. The radius of the duct is 1 m: Since the geometry is symmetric about the
duct axis, only half of the duct is used in the computation. A fine uniform grid ðDx ¼ Dy ¼ 0:019Þ
is firstly established and it has 33 PPW grid resolution in the axial direction without mean
flow. A total of 55 400 grid cells is used. Stretched grids are also used and will be presented in
later sections. In monitoring solution convergence, results along a 2 m radius arc, with its
center at ðxe; 0Þ; and angle f ranging from 0	 to 120	; are compared after each incident wave
period (Fig. 3). A relative error of 1% is used as the convergence criterion. For the uniform grid
without mean flow, a computational time of 35 incident wave periods is sufficient for solution
convergence.
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In the wave admission region the incident acoustic wave in the whole buffer zone is defined for a
(0,1) mode in a circular duct as

p0ðx; y; tÞ ¼ aJ0ðkryÞRe½eiðkt�kaxÞ�;

r0ðx; y; tÞ ¼ p0ðx; y; tÞ;

u0ðx; y; tÞ ¼
ka

ðk � kau0Þ
p0ðx; y; tÞ;

v0ðx; y; tÞ ¼
a

ðk � kau0Þ
dJ0ðkryÞ

dy
Re½eiðkt�kaxþp=2Þ�;

w0ðx; y; tÞ ¼ 0; ð8Þ

where the wave amplitude a is fixed at 10�4 to ensure small pressure perturbation to the mean
pressure 1=g ðC0:71Þ and the frequency is k ¼ 11 ð595 HzÞ: The radial wavenumber kr is
determined by turning points of the Bessel function. The axial modal number ka and cut-off ratio
x are calculated from

ka ¼
k

b2
�u0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x�2

q� �
and x ¼

k

krb
;

where b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2

0

q
and ka is positive for upstream-moving wave and u0p0:

4.2. Effect of the buffer zone as a non-reflecting condition

For the present case, the outgoing disturbances in the admission region come mainly from the
duct edge. The wave reflections from the wave emission region are ignored in the analysis since
they are less important due to much weak wave magnitude. In fact, the shape/placement of the
buffer zone in the wave emission region can be manipulated to minimize the reflections.

Acoustic waves F 0 travelling inside the duct may be composed of three parts, the incident wave
F 0

i ; the outgoing wave F 0
o (towards the buffer zone) and the reflected wave F 0

r from the buffer zone.
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The reflected wave F 0
r should be much smaller than the other two waves after the buffer zone

treatment. Since the outgoing waves may have a radial component, the time history of the
pressure difference, p0 � p0

i; in which p0i is the known analytical solution, is monitored in the entire
duct area to check the efficiency of the buffer zone condition. The reflected waves could be
detected if the outgoing wave is contaminated. The effects of the buffer zone size on the wave
reflection are examined in terms of the incident wavelength.

Richards et al. [11] have shown that the reflections from the buffer zone can be ignored if the
wavefront angle is less than 30	: It is expected that same conclusion applies to the outgoing waves
reflected from the duct edge if its wavefront angle is small. To check the buffer zone performance
a number of buffer sizes have been tested using an uniform grid (33 PPW). The size of the buffer
zone ranges from a minimum of 5 grid cells to 2 wavelengths (66 cells). No apparent reflections are
observed in these tests. Fig. 4 shows a snapshot of the pressure difference for the buffer size of 5
cells. In one typical wave period all pressure differences move towards the buffer zone and their
levels are reduced in the buffer zone. High accuracy of the scheme means that the propagating
wave will almost be retained. Therefore, the spurious waves should be detected in the wave
propagating region if they are not filtered in the buffer zone and reflected. The fact of no apparent
trace of the reflected waves indirectly confirms that there are no significant wave reflections from
the buffer zone.

The wavefront angle of the outgoing wave depends on the cut-off ratio x: A smaller cut-off ratio
will result in a larger wavefront angle. In this case, the cut-off ratio is 2.87 and wavefront angle of
the incident wave is about 20:4	: As the minimum buffer size has been successfully used in this
test, the wavefront angle of the outgoing wave may be less than 20:4	:

4.3. The integration surface placement

Placement and shape of the integration surface may affect the prediction accuracy of the FW–H
solver. In this study the integration surface is constructed based on the LEE computational grid
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and uses the existing cells for the integration. Various surfaces with different integration cell
densities can be used. Also the effectiveness of the non-reflection boundary condition could affect
the information recorded on these surfaces, if they are placed close to the boundary. To study the
effect, three integration surfaces shown on Fig. 5 are tested. The surface one is close to the duct
and the surface three is close the wave emission regions.

Grid sensitivity is firstly tested using the information recorded on the surface one for one test
case (23 PPW and u0=0). Tests are conducted with the 100%, 50%, 25% and 12.5% of the grid
cells on the surface. The base grid is an uniform, rectangular one with Dx ¼ 0:027; Dy ¼ 0:019:
Results are presented in Fig. 6. It shows that half grid cells on the surface are sufficient for the
directivity prediction. Small differences appear at high observation angle f for the 50% cells. This
difference in the farfield directivity level increases as the cell density is reduced. Different
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behaviours at high and low angles may be caused by the difference in the size of the grid (Dx and
Dy) in the axial and radial directions.

The farfield directivity patterns with various grid cells and surface placements are shown in
Figs. 7 and 8. Main features such as the first two main radiation peaks and the interference dip
angles are all well predicted for all surfaces. Such consistency is as expected due to the good
performance of the buffer zone as non-reflecting boundary condition and the face that there is no
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mean flow. It is observed that the predicted directivity from the surface one is the most accurate at
high angle f; suggesting that the surface one contains more information than the other two. The
discrepancies in the directivity patterns at high angle between three surfaces are reduced when full
grid cells are utilised (Fig. 8).

4.4. Grid resolution

Grid resolution affects the nearfield acoustic wave propagation and hence the farfield
directivity. It is generally accepted that, for a high order scheme, a minimum of 6 PPW should be
used in the computation. The minimum PPW requirement of course depends on specific spatial
schemes. In this study, a baseline case is established using a very fine uniform grid (33 PPW). It is
believed, however, that the high PPW requirement may only be needed in the immediate region
around the edge of the duct where wave diffraction occurs. In this work a series of uniform grids
are tested to find the minimum PPW requirement for accurate farfield directivity prediction, which
are followed by a series of exercises using stretched grids around the edge of the duct. The aim is
to reduce the overall grid resolution requirement yet maintain the same level of accuracy.

In the uniform grid study, grids with 5, 10, 15 and 33 PPW at u0 ¼ 0 are used, corresponding to
the in-duct grid size of 13� 55; 26� 55; 37� 55 and 83� 55: When a mean flow of u0 ¼ 0:5; grids
of 7, 16 and 30 PPW are tested. In the u0 ¼ 0 cases, results using grids of 15 and 33 PPW agree
well with the analytical solutions (Figs. 9 and 10). Only a slightly lower level is observed in high
observation angles ðf > 80Þ: In all four cases, main differences between the CAA predictions and
the analytical solutions are in the high observation angles above 60	; which indicates the influence
of the edge of the duct on the prediction quality. For the 5 PPW grid, there is a big drop in the
pressure level ð6:6 dBÞ and a large phase deviation, indicating an inadequate grid resolution. It
appears that a minimum grid resolution around the edge of the duct should be around 15 PPW.
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With the presence of a mean flow, the grid resolution requirement reduces. The grid resolutions
drop from 15 and 33 PPW at u0 ¼ 0 to 7 and 16 PPW at u0 ¼ 0:5; respectively. The results show
generally good agreement (Fig. 10) and a low grid resolution of 7 PPW now gives reasonable
predictions.

A stretched grid is constructed using a transformation function in the axial and radial
directions. The grid is compressed towards the duct wall in the radial direction and the edge of the
duct in the axial direction. In the axial direction if x1 is placed at the position a and xmax at the
position b shown in Fig. 2, the transformation function is defined as

xi ¼ x1 þ ðxmax � x1Þ 1 � bþ
2b

1þ ððbþ 1Þ=ðb� 1ÞÞc

" #
; ð9Þ

where compression ratio b > 1:0; and c ¼ ðimax � iÞ=imax; i ¼ 1; 2;y; imax where imax is the
maximum axial grid number and xi is the corresponding axial coordinate value for index i: In this
exercise, the cell size of the buffer zone is kept constant. Same procedure is used to form the
stretched grid in the radial direction.

The grid stretching is performed on 5, 10 and 15 PPW uniform grids for the u0 ¼ 0 case and on
the 7 PPW uniform grid for the u0 ¼ 0:5 case. As shown in Fig. 11 a stretched grid has an average
10 PPW resolution in the duct with minimum 6 PPW ðDx ¼ 0:1; Dy ¼ 0:006Þ and maximum 15
PPW ðDx ¼ 0:018; Dy ¼ 0:006Þ in the left and right sides of the duct.

A typical result using a stretched grid is shown in Fig. 12 for the u0 ¼ 0 and 10 PPW case. There
appears a marked improvement in the directivity prediction, in both the level and angle. The
improvement is especially good at high observation angles, though the predicted shadow
interference dip angle is not sharp for the stretched grid. This is probably due to the coarse grid
cells now used for the integration surface construction. In Fig. 13, the contours of nearfield
pressure are plotted. The contour shapes of the pressure are very smooth except those associated
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with very low values which may relate to numerical truncating errors. It is clear that by using
locally stretched grid with an average 10 PPW resolution the directivity prediction can be as good
as that using 15 PPW on an uniform grid.

5. Concluding remarks

Certain issues in establishing a numerical method for duct acoustic radiation are addressed
through a case study of planar wave radiation from a straight duct. The method is based on
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solutions of linear Euler equations and the acoustic analogy. Comparisons of the farfield
directivity with analytical solutions show good agreement. The main observations are:

1. Good performance of the buffer zone/admission zone is achieved. Strong damping and small
wavefront angle are two main requirements for good performance. In practice, a buffer zone
size of 20 cells (minimum 5 cells) may be sufficient for the duct propagation computation as
wave reflections are determined by the cut-off ratio and the wavefront angle instead of PPW
requirement.

2. The placement of the FW–H integration surface has only a marginal effect on the farfield
directivity prediction.

3. The quality of the computation near the edge of the duct influences the farfield directivity
prediction, especially in the angle prediction. Stretched grids increase local grid resolutions
around the edge of the duct and give to the best predictions in both the farfield directivity and
the sound pressure in the nearfield without mean flow. With a mean background flow, a
stretched grid should be used with caution. For the unflanged duct case, a minimum 7 PPW can
be used for the majority of the propagation area, but around the duct edge a high resolution of
PPW > 15 should be adopted.
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